- 1 If all three angles are less than 60°, then the sum of interior angles of the triangle would be less than 180°. This is a contradiction as the sum of interior angles is exactly 180°.
- 2 Suppose there is some least positive rational number $\frac{p}{a}$. Then since,

$$rac{p}{2q}<rac{p}{q}$$

there is some lesser positive rational number, which is a contradiction. Therefore, there is no least positive rational number.

Suppose that \sqrt{p} is an integer. Then

$$\sqrt{p} = n$$
,

for some $n \in \mathbb{Z}$. Squaring both sides gives

$$p=n^2$$
.

Since $n \neq 1$, this means that p has three factors: 1, n and n^2 . This is a contradiction since every prime number has exactly two factors.

Suppose that x is rational so that $x=rac{p}{q}$ where $p,q\in\mathbb{Z}.$ Then,

$$egin{array}{l} 3^x=2 \ \Rightarrow & 3^{rac{p}{q}}=2 \ \Rightarrow & \left(3^{rac{p}{q}}
ight)^q=2^q \ \Rightarrow & 3^p=2^q \end{array}$$

The left hand side of this equation is odd, and the right hand side is even. This gives a contradiction, so x is not rational.

Suppose that $\log_2 5$ is rational so that $\log_2 5 = rac{p}{q}$ where $p,q \in \mathbb{Z}$. Then,

$$egin{array}{ccc} 2^{rac{p}{q}} &= 5 \ \Rightarrow & 2^{rac{p}{q}} &= 5 \ \Rightarrow & \left(2^{rac{p}{q}}
ight)^q &= 5^q \ \Rightarrow & 2^p &= 5^q \end{array}$$

The left hand side of this equation is odd, and the right hand side is even. This gives a contradiction, so x is not rational.

6 Suppose the contrary, so that \sqrt{x} is rational. Then

$$\sqrt{x}=rac{p}{q},$$

where $p,q\in\mathbb{Z}$. Then, squaring both sides of the equation gives,

$$x=rac{p^2}{q^2},$$

where $p^2,q^2\in\mathbb{Z}$. Therefore, x is rational, which is a contradiction.

Suppose, on the contrary that a+b is rational. Then

$$b = \overbrace{(a+b)}^{\text{rational}} - \overbrace{b}^{\text{rational}}$$

Therefore, \boldsymbol{b} is the difference of two rational numbers, which is rational. This is a contradiction.

8 Suppose b and c are both natural numbers. Then

$$c^2 - b^2 = 4$$

 $(c - b)(c + b) = 4$.

The only factors of 4 are 1, 2 and 4. And since c + b > c - b,

$$c - b = 1$$
 and $c + b = 4$.

Adding these two equations gives 2c=5 so that $c=rac{2}{5}$, which is not a whole number.

9 Suppose that there are two different solutions, x_1 and x_2 . Then,

$$ax_1 + b = c$$
 and $ax_2 + b = c$.

Equating these two equations gives,

$$ax_1+b=ax_2+b$$
 $ax_1=ax_2$ $x_1=x_2, \qquad (\text{since } a \neq 0)$

which is a contradiction since the two solutions were assumed to be different.

- **10a** Every prime p > 2 is odd since if it were even then p would be divisible by 2.
 - **b** Suppose there are two primes p and p such that p+q=1001. Then since the sum of two odd numbers is even, one of the primes must be 2. Assume p=2 so that q=999. Since 999 is not prime, this gives a contradiction.
- 11a Suppose that

$$42a + 7b = 1$$
.

Then

$$7(6a+b)=1.$$

This implies that 1 is divisible by 7, which is a contradiction since the only factor of 1 is 1.

b Suppose that

$$15a + 21b = 2$$
.

Then

$$3(5a+7b)=2.$$

This implies that 2 is divisible by 3, which is a contradiction since the only factors of 2 are 1 and 2.

12a Contrapositive: If n is not divisible by 3, then n^2 is not divisible by 3.

Proof: If n is not divisible by 3 then either n = 3k + 1 or n = 3k + 2.

(Case 1) If n=3k+1 then,

$$n^2 = (3k + 1)^2$$

= $9k^2 + 6k + 1$
= $3(3k^2 + 2k) + 1$

is not divisible by 3.

(Case 2) If n=3k+2 then,

$$n^2 = (3k + 2)^2$$

= $9k^2 + 12k + 4$
= $9k^2 + 12k + 3 + 1$
= $3(3k^2 + 4k + 1) + 1$

is not divisible by 3.

This will be a proof by contradiction. Suppose $\sqrt{3}$ is rational so that $\sqrt{3}=rac{p}{q}$ where $p,q\in\mathbb{Z}$. We can assume that p and q have no common factors (or else they could be cancelled). Then,

$$p^2 = 3q^2$$
 (1)
 \Rightarrow p^2 is divisible by 3
 \Rightarrow p is divisible by 3
 \Rightarrow $p = 3k$ for some $k \in \mathbb{N}$
 \Rightarrow $(3k)^2 = 3q^2$ (substituting into (1))
 \Rightarrow $3q^2 = 9k^2$
 \Rightarrow $q^2 = 3k^2$
 \Rightarrow q^2 is divisible by 3
 \Rightarrow q is divisible by 3.

So p and q are both divisible by 3, which contradicts the fact that they have no factors in common.

13a Contrapositive: If n is odd, then n^3 is odd.

Proof: If n is odd then n=2k+1 for some $k\in\mathbb{Z}.$ Therefore,

$$n^3 = (2k + 1)^3$$

= $8k^3 + 12k^2 + 6k + 1$
= $2(4k^3 + 6k^2 + 3k) + 1$

is odd. Otherwise, we can simply quote the fact that the product of 3 odd numbers will be odd.

b This will be a proof by contradiction. Suppose $\sqrt[3]{2}$ is rational so that $\sqrt[3]{2} = \frac{p}{q}$ where $p, q \in \mathbb{Z}$. We can assume that p and q have no common factors (or else they could be cancelled). Then,

$$p^3 = 2q^3$$
 (1)
 \Rightarrow p^3 is divisible by 2
 \Rightarrow p is divisible by 2
 \Rightarrow $p = 2k$ for some $k \in \mathbb{N}$
 \Rightarrow $(2k)^3 = 2q^3$ (substituting into (1))
 \Rightarrow $2q^3 = 8k^3$
 \Rightarrow $q^3 = 4k^3$
 \Rightarrow q^3 is divisible by 2

So p and q are both divisible by 2, which contradicts the fact that they have no factors in common.

14 This will be a proof by contradiction, so we suppose there is some $a,b\in\mathbb{Z}$ such that

$$a^{2} - 4b - 2 = 0$$

$$\Rightarrow a^{2} = 4b + 2$$

$$\Rightarrow a^{2} = 2(2b + 1) \qquad (1)$$

q is divisible by 2.

which means that a^2 is even. However, this implies that a is even, so that a=2k, for some $k\in\mathbb{Z}$. Substituting this into equation (1) gives,

$$(2k)^2 = 2(2b+1) \ 4k^2 = 2(2b+1) \ 2k^2 = 2b+1 \ 2k^2 - 2b = 1 \ 2(k^2 - b) = 1.$$

This implies that 1 is divisible by 2, which is a contradiction since the only factor of 1 is 1.

15a Suppose on the contrary, that $a > \sqrt{n}$ and $b > \sqrt{n}$. Then

$$ab > \sqrt{n}\sqrt{n} = n,$$

which is a contradiction since ab = n.

b If 97 were not prime then we could write 97 = ab where 1 < a < b < n. By the previous question, we know that

$$a \leq \sqrt{97} < \sqrt{100} = 10.$$

Therefore a is one of

$${2,3,4,5,6,7,8,9}.$$

However 97 is not divisible by any of these numbers, which is a contradiction. Therefore, 97 is a prime number.

Let m = 4n + r where r = 0, 1, 2, 3.

(
$$oldsymbol{r}=0$$
) We have,

16a

$$m^2 = (4n)^2$$

= $16n^2$
= $4(4n^2)$

is divisible by 4.

(r=1) We have,

$$m^2 = (4n + 1)^2$$

= $16n^2 + 8n + 1$
= $4(4n^2 + 2n) + 1$

has a remainder of 1.

(r=2) We have,

$$m^2 = (4n + 2)^2$$

= $16n^2 + 16n + 4$
= $4(4n^2 + 4n + 1)$

is divisible by 4.

(r=3) We have,

$$m^2 = (4n + 3)^2$$

= $16n^2 + 24n + 9$
= $16n^2 + 24n + 8 + 1$
= $4(4n^2 + 6n + 2) + 1$

has a remainder of 1.

Therefore, the square of every integer is divisible by 4 or leaves a remainder of 1.

b Suppose the contrary, so that both a and b are odd. Then a=2k+1 and b=2m+1 for some $k,m\in\mathbb{Z}$. Therefore,

$$c^{2} = a^{2} + b^{2}$$

$$= (2k+1)^{2} + (2m+1)^{2}$$

$$= 4k^{2} + 4k + 1 + 4m^{2} = 4m + 1$$

$$= 4(k^{2} + m^{2} + k + m) + 2.$$

This means that c^2 leaves a remainder of 2 when divided by 4, which is a contradiction.

Suppose by way of contradiction either $a \neq c$ or $b \neq d$. Then clearly both $a \neq c$ and $b \neq d$. Therefore,

$$a+b\sqrt{2}=c+d\sqrt{2} \ (b-d)\sqrt{2}=c-a \ \sqrt{2}=rac{c-a}{b-d}$$

Since $\frac{c-a}{b-d} \in \mathbb{Q}$, this contradicts the irrationality of $\sqrt{2}$.

Squaring both sides gives,
$$3+2\sqrt{2}=\left(c+d\sqrt{2}\right)^2$$

$$3+2\sqrt{2}=c^2+2cd\sqrt{2}+2d^2$$

$$3+2\sqrt{2}=c^2+2d^2+2cd\sqrt{2}$$

Therefore

$$c^2 + 2d^2 = 3$$
 (1)
 $cd = 1$ (2)

Since c and d are integers, this implies that c = d = 1.

18 There are many ways to prove this result. We will take the most elementary approach (but not the most elegant). Suppose that

$$ax^2 + bx + c = 0 (1)$$

has a rational solution, $x=rac{p}{a}$. We can assume that p and q have no factors in common (or else we could cancel). Equation (1) then becomes

$$ax^2 + bx + c = 0$$
 $a\left(\frac{p}{q}\right)^2 + b\left(\frac{p}{q}\right) + c = 0$ $ap^2 + bpq + cq^2 = 0$ (2)

Since p and q cannot both be even, we need only consider three cases. (Case 1) If p is odd and q is odd then equation (2) is of the form

$$odd + odd + odd = odd = 0.$$

This is not possible since 0 is even.

(Case 2) If p is odd and q is even then equation (2) is of the form

$$\mathrm{odd}\,+\,\mathrm{even}\,+\,\mathrm{even}\,=\,\mathrm{odd}\,=0.\,[t]$$

This is not possible since 0 is even.

(Case 3) If p is even and q is odd then equation (2) is of the form

$$even + even + odd = odd = 0.$$

This is not possible since 0 is even.